
•/

Perspectives on the IRIS Explorer Visualization Environment

A1 Globus, Computer Sciences Corporation

Report RNR-9_-021

18 May 1992

This work was supported by NASA Contract NAS 2-12961 to Computer Sciences Corporation

for the Numerical Aerodynamic Simulation Systems Division at NASA Ames Research Center.

Copies of this report are available from:

NAS Applied Research Office

Mail Stop T045-1
NASA Ames Research Center

Moffett Field, CA 94035

(415) 604-4332

• I¸k " • k -

Perspectives on the IRIS Explorer

Visualization Environment

A. Globus, Computer Sciences Corporation 1

Abstract

A critique of Silicon Graphics, Inc.'s medium grain data flow scien-

tific visualization environment IRIS Explorer is presented. Explorer

shows promise as an important tool for users to quickly and easily

build custom distributed visualization applications. Developers can

use Explorer to create new visualization techniques without re-

implementing common functionality. There are, however, significant

flaws. Although Explorer is no worse than much new UNIX soft-

ware, by absolute standards Explorer is buggy. Explorer also uses a

bit too much memory and is too slow for highly interactive tracking

tasks. These problems should be solvable. Database management is

weak and this is inherent in the data flow model. The flaws notwith-

standing, Explorer is sufficiently reliable and capable to do a great

deal of useful work.

Introduction

This paper is based on using IRIS Explorer 1.0 [SGI92a] at NAS 2 for six months developing new

computational fluid dynamics (CFD) visualization techniques. Although there were many frus-

trating moments along they way, we were able to visualize a number of data sets and develop and
test new visualization algorithms.

Explorer is a general purpose scientific visualization software environment bundled with Silicon

Graphics, Inc. workstations. Figure 1 is a screen dump of an Explorer working session. Explorer

is available on the Cray YMP and is being ported by other hardware vendors. Explorer uses a

WIMP 3 user interface to data flow programming; an approach pioneered by Upson89. A well

designed traditional application will usually outperform Explorer for a particular task, but an

investigator frequently needs something slightly different than what any given application does.

Data flow programming combined with a suitable set of processing modules provides enormous

flexibility. Subroutines written in C, C++ or FORTRAN can, in many cases, be easily integrated
into Explorer.

Explorer has its own terminology for data flow. The data flow diagrams are called maps. Data

1. This work is supported through NASA contract NAS2-12961.
2. The NAS (Numerical Aerodynamic Simulation) Systems Division at NASA Ames Research Center is a

supercomputer facility for the study of computational aerosciences. NAS has two large Crays, a Connection
Machine, an Intel hypercube, a large Convex, 150+ Silicon Graphics Inc. workstations, a number of Suns,
and a multi-terabyte mass storage system communicating via ethernet and high speed (ULTRA) local net-
works. NAS also supports AERONET, a wide area network providing NAS services to industry, govern-
ment, and academia.

3. Windows, Icons, Mice, and Pointing

i

flow diagrams consist of nodes connected by edges, similarly, Explorer maps consist of modules

connected by wires. Modules process data and data flows along wires. Each module is imple-

mented as a separate UNIX processes. Wires are implemented in shared memory where feasible

and with UNIX pipes elsewhere; e.g., between machines or on a Cray.

Explorer focuses on visualization of static 2-D and 3-D scalar fields. Visualization of vector fields

is weak and complex time series visualization problematic. The architecture to visualize vector

fields exists although more modules are needed. For time series visualization one cannot easily

control the database created or guarantee deterministic, synchronous generation and display of

large time step visualizations in all cases.

Since the SGI marketing literature and manuals elucidate the positive aspects of Explorer, this

paper will focus on deficiencies and problems. Although there are many such, we are generally

pleased with Explorer for visualization of steady state data and use it frequently. One should note

that the bugs mentioned here exist at the time of writing and may have been subsequently fixed.

Finally, few deficiencies noted in this paper are unique to Explorer. They are shared, in most

cases, by other scientific visualization environments. All performance figures in this paper were

taken on a SGI 320 VGX with 64Mbytes of memory.

The remainder of this paper is divided into sections on user, programmer, and visualization

researcher perspectives on IRIS Explorer.

User Perspective

The user perspective includes sections on available modules, user interface, performance, reliabil-

ity, importing data, save/restore, video production, distributed processing, time dependent visual-

ization, and an analysis of Explorer as a programming language.

Modules

A list of modules is maintained by the Librarian. These modules may be dragged into the Map

Editor to become part of the current map. SGI provides a number of modules and more are in the

public domain. There is a good selection of scalar field visualization modules, a wide variety of

image processing modules, a couple of rendering modules, and a few handy utility modules. Util-

ity modules include colormap generators, histograming, a data set generator, disk IO, subsam-

piing, etc. The utility module collection is not complete, the author has found it necessary to write

a number of simple utility modules to perform various mundane tasks. In addition, there is a pau-

city of vector field visualization modules. For example, we have yet to find a tangent curve mod-
ule.

There is terrific unsupported module called RenderRemote. This provides a unique feature: ren-

dering graphics on a remote machine, This allows one to put the widgets and map on an inexpen-

sive X-server and devote an entire high performance graphics screen to the visualization.

RenderRemote can also be used such that several physically separated individuals on the same

network can view the same visualization. Nothing is perfect, and RenderRemote has a perfor-

mance problem that can cause rotating objects to jerk every few seconds. This is merely a bug, not

a fundamental problem with the design.

User Interface

Explorer has WIMP user interfaces for all portions of the system. There is no command or script-

ing language for normal operation, although several are hidden beneath the surface.

TheApple Macintoshis recognizedfor its excellentuserinterface.Macprogramsaresupposedto
conformto a setof guidelines[Apple85].Accordingto theseguidelines,theusershouldfeel in
controlof thesystem,not theotherwayaround.This is achievedby systemsthatembodythree
qualities:responsiveness,permissiveness,andconsistency.In addition,modesshouldbeavoided
or at leastclearlyindicated.Additionally,softwaresystemsshouldbeforgiving,convenient,and
self-explanatory.WeexaminetheExploreruserinterfacein theseterms.

• Exploreris somewhatresponsive.Responsivenessis relatedto thedirectnessof
manipulationandspeedof response.Responseshouldbeessentiallyinstanta-
neousfor discreteinputs(e.g.,settingaparameter)and>8 framespersecondfor
trackingtasks(e.g.,manipulatingviewpoint).Onecandirectly manipulatethe
Explorermap.Thedataareindirectlymanipulatedby programmingthemap.
Graphicoutputis bothdirectlyandindirectlymanipulated.Visual feedbackfor
actionsusuallymeetstheperformancerequirements,butsemanticcompletionis
frequentlyordersof magnitudeslower.Forexample,draggingmodulesis fast
andsmoothbut it takesa few secondsfor moduleto launch,manipulatingwid-
getsis quick butwidgetsonly outputnumberswhenthemousebuttonisreleased,
andthesimplestanimationsonsmalldatasets,e.g.sweepingthroughgridplanes,
is far slowerthan8 framesasecondonour4D 320VGX.

• Exploreris very permissive.Onecanassemblemodulesin anycombinationand
connectanytwo moduleswhereinputsandoutputsaretypecompatible.This is
lcrue even if modules run on many heterogeneous machines

• Explorer is fairly consistent. All modules present the same user interface and all

module widgets are similar. However, other portions of the system do not exhibit

such consistency. For example, there are multiple file browsers each with a differ-

ent layout and behavior.

• Explorer is relatively modeless. There are no hidden modes or switches that pro-

duce radically different behavior from apparently similar objects, except in the

Render module. The render module has multiple navigation modes.

• Explorer in not very forgiving. There is no undo, the most important forgiveness

mechanism. If a module corrupts shared memory, which happens from time to

time, one must exit Explorer and restart.

• Explorer is not particularly convenient. The data flow model requires a great deal

of manipulation to do simple visualizations. The Librarian is clumsy. As men-

tioned before, widgets only take effect when released so it is tedious to interac-

tively hone in on an unknown value.

• Once one understands the basics, Explorer is largely self-explanatory. Each mod-

ule has on-line help which is almost always very useful. The development tools

make on-line help production very easy (see below) so that help files are usually

quite good.

Performance

The worst performance problem with early data flow visualization systems was excessive copying

of data. Wires were implemented as UNIX pipes so data were multiply copied for each wire. This

is prohibitive for large data sets. Explorer has solved this problem on SGI workstations by using

:.:]'

shared memory to implement data flow and avoiding unnecessary copy operations. The Cray has

no shared memory, so data passed between modules will be copied. This can be a significant over-
head.

Like any general purpose tool, efficiency will suffer compared with more special purpose imple-

mentations. For example, to loop through grid planes displaying a scalar field from a blunt fin data

set 4 [Hung85] where the data required 7.2 Mbytes of storage, FAST [Bancroft90] required 12.4

Mbytes and Explorer required 14.3 Mbytes, a 40% increase in memory overhead. FAST was

noticeably faster than Explorer for this task.

It is possible to perform some direct data manipulations using a map including the PickLat mod-

ule, but even with small data sets interactive performance is unacceptable. We created a map

using PickLat to select a small portion of a 12 x 12 x 12 uniform data set. The portion chosen was

averaged and this average was used as an isosurface threshold. Even with this tiny data set, delays

between mouse movements and isosurface drawing were on the order of seconds.

The performance of the Render module is excellent. Point of view changes are very fast, even

with many polygons requiring lighting, transparency, etc. However, when there is enough graph-

ics data, performance eventually degrades. One can specify wireframe or points-only drawing to

improve performance, but there is no adaptive degradation mode to keep update rate constant as

the amount of graphics data increases.

Reliability

Explorer 1.0 has many obvious bugs. When exploring a new aspect of the system, we inevitably

runs into more. Bugs are a problem from two perspectives. First, they are frustrating to work

around. More important for scientific purposes, they put results into question. If there are numer-

ous obvious bugs, one suspects even more numerous subtle bugs; bugs that produce slightly

incorrect results. Thus, confidence in the results produced by Explorer is undermined; or should

be.

To increase confidence in results, one could use two modules that should produce similar results.

These modules need to be developed independently. If the module outputs are equivalent for iden-

tical input, the probability that the both are incorrect is the small since the total probability is the

product of the probability of each being in error, numbers that are generally much less than one.

Importing Data

One of the tedious tasks in scientific visualization is converting data formatted by sensors or

numerical simulations into a form that visualization software can understand. To address this

issue, SGI provides a WIMP application called Data Scribe. Data Scribe creates modules that

read disk files into Explorer lattices 5. The WIMP interface is used to describe the format of the

file and how the data should be shuffled into lattice format. Data Scribe is sufficiently general that

most semi-reasonable data formats equivalent to an n-dimensional array can be read correctly. We

have not used Data Scribe a great deal as C++ modules are faster, but others have given Data
Scribe rave reviews.

Save and Restore

Maps can be saved to disk and read back in. For the most part this works well and is of great util-

4.40x32x32 nodes on a curvilinear grid
5. A lattice is the Explorer multidimensional array data structure.

ity. Unfortunately, modules do not save internal state. This deficiency is serious for the Generate-

Colormap and Render modules. These modules have a complex internal state which is lost when a

map is saved to disk. There is also a serious bug. When modules are combined into a group (see

below), they may be saved to disk but cannot be read back in. This substantially limits the utility

of module grouping.

All the Explorer data structures may be saved and restored in ascii or binary formats. This format

is not documented nor does SGI promise stability of the format in future releases, although back-

wards compatibility may be expected.

Video

There are two serious problems when using Explorer to produce scientific videos. Both could be

easily corrected by the Explorer development team but cannot be worked around by current users.

There is no way control line pixel width in Explorer. If a module sets the color of a Geometry

object, and several do, the Render module cannot over-ride with another color. This may cause

problems when producing videos.

There is no way to use stop frame video production techniques in Explorer. Thus, if performance

is not sufficient to take video off the screen in real time there is a problem. Since many excellent

scientific visualization videos are created using stop frame techniques, its absence is a major defi-

ciency.

Distributed Processing

Explorer is designed such that modules on multiple machines can work together. This works very

well. One simply brings up a Librarian for each machine and drags modules onto the Map Editor

in the usual way. Figure 2 is a distributed Explorer map. Format conversions are automatic 6 and

.'., __",_.,"_!_?_i_ _."._i_.':",'_,_ _"___;__̀ `._`:;.`.._:`_```_%````_:`_`_;:`_```<``````_``_````_:`:_:`:___ __ ______'_: _:'-_ _.':."..'_!:__:_:':::' _ ..'._,:_ "..__,_ _:_*_,_,',.-',_

I _g'*_'_"_% '_ _"_" _..'_..", :::.,x,'_................._._....._._.......__.____...._._______._..._.............._._......._._..._.._....::: _+.'.._.'-_:.:.:.:.:.:.:.:+:+:.:•:.:•:.:+:.:.:.:.:.:.:.:.:.:.:.:.:.:•:::::::::::::::: :_ :.::::::::::: :_:::::: :_:: :':': :==:+x+.'.:.:_.:.:+:+x•: :-:.1+x.:::.':..':...+:..'.l_{_.x_+ x + x +:.:.:._
:: :::

..',:
__._::':-::_:i:l: :I'__N_:N ::::::::::::_ '_:!_:_::.x.':_:_:i:i:i_._._._N_.'-.'_,_i.': ::':._.'.'_.::_:.::_i_.'.4."_:_':_:'_:i:_:i:::?.:- _::::::::___ ..,..._..._.•.:.._...:.:..........................,,..,._
r " " :::::" "......................... • - _'_'.. _ :._" _ ,'4.':

g.xx.'..i:_:_:_:_:_:_:_:_.................._:.._;" ::: _::':-N:_:'::::"....................... _._
:$'.':..1..%

':-:.:-::b'.-:.-:::.-:.-:.-::::::..._;_:;_:i:i.':_:.-:...:"_;_:.:.;:%_.:::S" ..:< :::::::::::::::::::::::::.. :::::: :::::" .:" --.::::::::.,':_ :: ::: _.::_

"'_:-:.:-.'..:.::.:': ..'.".-...:-.-._':_......:.__o e..._..'......'.......:-...:_'.:.'.:..'.:.:.:.:.'.:.:.:.:.:.:.:.x :+:-:-:---x-:-:--.-.:'..'.._ :...'.. ."'.-....._i_i_

! ::: :_ _ :._?i:_:_:_:_!_!:!:!:_:_ .i:!_..'iiiii:ii!_!_:!:i::_: _.::!:!:!:!:__..:!_i :: _ ;::,"

e::.':.::._.?._

`:_:.:....:.:.:_:._.:_.:.:.:.:.:.:.:_:.:.:_:.:.:_:.:.:_:.:.:_:.:_:_:.:.:.:.:.:.:_.:._._._.:.:.:.:_:.:.:.:.:." ': :::':':':'::"$'::'::':::':::':':::" "_ ":" ":" "::::::'::.:...x.:...:.:.:.:+:-........ ::::::-............:::::: ::::::::::::::::::::::::::::::: :: :." .:.:.v"::_N
#..._:..`.._._`_?:N_!_!:!:_:.::!:_:_:_:_._`.._:_:`::_:_:_:1:;.:.:i:_:_:_:_:..`._.._:_:_:_:_:_:!:!:!:?_:?_:_:i:_:_:_:_:?:_!_.::i,:_:_:_:_:_: :i:i:i:i:_:i:!:_:_:?!:_:!:_:i:_:i:i:_:_i:i:_:_i_iii:i_i_ii_i - ii _:..,..,x."_il/ti _:":"'::::::::::::::_"_:"_*_*_:_'_:"_::*:""""_:_*_'_'::::_': :_:::_.............__............................... .'..-.w-_. _..,_
',,,_.,,_,_,_.,_,,,,,,,.,,,_._,..,,,_._.........,_,,,_.,,...._,:..............._..._._-_._ _. __ _i_i ti,..,

N_ _!:!....:_._.`..:_:_:::..<._`_{_:_:_:_:`..:_:_:._`..._*_:_:_:_.`::::::_::..<._.`..::::::::::_::_:!:.::.::.::!:::!:_:_::.__.}.'_i :i:_::::i:i:: _! !._i_
.,,,:.,.._:.._._...::`...`...`_%_:_._;.*.::::::.%_:_._.:_.+:.:.:.:.:.:.:.:._:._...::_._` _,.'...... _i_i_..._. _.:..*:: _ _ :::::::::::::::::::::..... .,
.;, _" "":":"""_: :":.............:"!!'_'.".'i_i_i_i."..'.'_::"":':!!""":_!_.... _ii::::: :_i_i_ii_i_ii_i_:_ i_:_ _::_i_i_!i!l_i_ _.'.:..'.'_
* :::===.::. ===:::::: :: :_:_:

....x_:_:_..:_._:_........:.:....:_:.x..xx_.x_:._:._._._.x_:_:_:_:_:_:_._.:_+:.:.:_:._:_:_: ==::::.::: ::::::::::::::::::::::::::::: 1::::.:::::::::::::_:: .:: _
Ni_ !!{_."!:!_._:!:!:!:!:!:._!{_!:}!:!:!:_:_:_!:}_4_ !!!_!_!_.::,.'_:_i i;_! i_i_ii_i_iiiiii;i_:_:_:_:_::_:_:_:_:._:_:_:_:!:_:_:_:_:i:_:i:.:.:_:_:_:_:_:_:_:_:_:_:_:_:_:_:_:!:._!:_:_:_:_.`...`..::_:_:_.,.'::_

Figure 2: Distributed Processing

all networking issues, except timing, are transparent. There are a couple of performance problems

that are very easy to work around and one that requires the SGI's attention.

6. Except for the 'Unknown' data type, since Explorer does not know anything about its internal structure.
See below for a discussion of data types.

When two modules are connected, the wire appears briefly then disappears. After a delay, it re-

appears. When the two modules are on different machines, the delay can be lengthy. When the

wire disappears, one justifiably suspects that the connection failed, although this is usually not the
case.

When passing a single data item over several wires that pass between two machines, the same

data is sent over each wire. I.e., the same data is transferred several times. This can be avoided by

passing the data to a single module on the remote machine then connecting multiple wires from

that module to the data's destinations. SGI does not provide such a module but it is trivial to write.

There is one performance problem for which no easy work around exists. When Explorer sends

data over a network the data are converted to network neutral format for the send and converted to

local format when received. If the sending and receiving machines are compatible, this conver-

sion is unnecessary.

Time Dependent Visualization

Very simple time dependent visualization is possible with Explorer, but more complex visualiza-

tion involving multiple geometries or large data sets is difficult or impossible. Time dependent

visualization minimally requires looping, convenient control of time step, and deterministic syn-

chronous presentation of time steps. As we will see, looping can be accomplished. In addition,

time step can be easily controlled with a widget. Thus a single Geometry can be produced per

time step and sequenced properly (most of the time), but when multiple geometries must be coor-

dinated problems arise.

Visualizations from different time steps may become mixed into the same picture. In the general

case, there is no way to insure that each frame produced by Render contains Geometries from

Qnly one time s_ep. This can happen because Explorer data have no concept of where they come

from or where they are going. Thus, if time steps are input to a map continuously and several

Geometries are produced per time step, each Geometry will be produced asynchronously. As long

as there are no missing time steps for any Geometry this should work. If one of the Geometry

streams misses a step for some reason, then the output will subsequently contain Geometries from

different time steps.

There is at least one way to lose time steps. This can be caused by Explorer's lack of input port

queueing. If the situation in figure 3 exists, data entering input module can be overwritten if the

data path takes long enough that the time step source module produces the next time step before

data path completes.

Time Step Source

Potentially overwritten

k /
Data Path: Processing _-_ Processing _ Processing

Input

Figure 3: Lack of Input Queueing Problem

Even if the Figure 3 situation does not exist, the Render module cannot reliably present all time

steps.TheRendermoduleonly displayswhenit is not busy.If onesendsGeometryobjectsto the
Rendermodulefastenough,it spendsall its timeupdatingdatastructuresandmaynotdrawapar-
ticular time stepatall! This deficiencycanalsocausesproblemswhensweepingplanesor isosur-
facelevelsthroughdata.

Language Issues

Explorer is programmed with a graphical language. Thus, one may ask what programming lan-

guage features Explorer provides. Programming languages generally have mechanisms for

sequencing, looping, selection, and subroutine calls. All of these are provided or can be easily

built in Explorer.

Sequencing is straightforward. Simply connect a series of modules together with wires from one
to the next.

Looping is harder but is frequently useful in scientific visualization. For example, looping through

a set of parallel cutting planes to visualize a volume. Looping can be difficult in data flow lan-

guages. SGI provides one limited loop module (Timer) and we had little difficulty writing mod-

ules to implement other kinds of looping. Since loops generally involve several modules and each

is a separate process, performance is much worse than for loops built into a traditional applica-
tion.

Selection modules (If-Then-Else, Case, etc.) are not provided but we wrote a simple If-Then mod-
ule in a few minutes.

Subroutine call functionality is provided by grouping modules into a single new module. WIMP

tools are provided to choose a subset of the possible inputs and outputs for the interface to the new
module -- and to rename them if desired. There is also a WIMP tool to create a custom control

panel for the group. The group feature will prove to be very valuable once the save/restore bug
mentioned earlier is fixed.

Programmer Perspective

Explorer's capabilities may be extended by developing new modules [SGI92b]. New modules

may be created in one of two ways: using the Module Builder to convert a C, C++, or Fortran sub-

routine into a module, or writing a Shape program for the LatFunction module. In general, adding

modules to Explorer is quite easy and involves very little programmer time beyond that needed to

code the algorithm involved.

Module Building

The Module Builder is a WIMP application that creates code to interface user subroutines to

Explorer. One specifies the inputs, outputs, and a control panel. The C, C++ or FORTRAN sub-

routine's arguments and return values are also defined. Finally, the connections between the input/

output ports and the subroutine's arguments and return value are defined. This is all very easy and

fairly intuitive.

Building a widget based control panel for a module is trivial. The Module Builder provides a

WIMP interface to choose parameters to control, type of widget to use, and for widget layout on

the control panel. Control panel layout is via direct manipulation. If a more sophisticated user

interface is desired, there are Explorer widgets that create X and/or GL windows.

It is possible to generate compile or run time errors with the Module Builder by incorrect specifi-

cationsor connections,or by enteringcodescrapsthatcontainerrors.Whentheyoccur,suchbugs
canbehardto find sincethereis nodebuggerthatdirectlyrelateserrorsto partsof theModule
Builderuserinterface.Also, one must click though a fairly extensive hierarchy of windows to

look at everything.

The Module Builder not only generates code, it manages all of the files and resources to fully inte-

grate new modules into Explorer; including automatically generated documentation files for on

line help and man pages. The developer adds explanatory text to the documentation files. When

module inputs/outputs change and the automatic documentation must be rewritten, the developer

added text is properly preserved.

Data Structures

It is possible to convert subroutines that know nothing about Explorer data structures into

Explorer modules. One can use the Module Builder to extract necessary data from input ports,

pass it in subroutine arguments, and get return values to output ports. However, the developer will

still need to understand Explorer data structures in order to use the Module Builder correctly. Fur-

thermore, it is frequently easier to operate on Explorer data structures as wholes rather than in

pieces. For example, our C++ classes have contructors with Explorer data types as arguments.

Explorer uses five data structures: parameter, lattice, pyramid, geometry and unknown. There is

no class hierarchy relationship.

Parameters are single values such as floating point numbers, strings or integers.

Lattices are multidimensional arrays with coordinate systems. There are two parts to a lattice: data

and coordinates. The data are simply a multi-dimensional array stored in FORTRAN order. The

coordinates can be 1, 2, or 3-D and uniform (regular), perimeter (stretched), or curvilinear. Lat-

tices are required to have data so lattices containing only curvilinear coordinates cannot be gener-

ated when only the grid is of interest. This is unfortunate as particle trace, grid generation, and

other modules might prefer to have only coordinates.

Pyramids are made up of a base lattice and a list of lattices and connections. The connections

specify relationships between nodes in two lattices. Pyramids are interpreted by SGI modules to

be finite elements (unstructured grids) or molecules. Pyramids may be interpreted differently by

other sets of modules. In particular, pyramids could be used for multi-zone, iblanked data sets

[Buning89] (see below), but we have not written any Explorer modules to process multi-zoned or
iblanked data.

Geometries are rendered by SGI provided graphics modules. SGI also supplies modules to con-

vert Lattices and Pyramids to Geometry. Geometry data structures are designed for fast rendering

using the SGI GL. Geometry is the same data structures used by the SGI 3-D toolkit software

(Inventor, formerly Scenario).

Unknown is an array of uninterpeted bytes. It can be used in any way a set of co-operating mod-
ules desire.

Memory management

Memory management can be difficult. Memory intensive items, such as data and curvilinear coor-

dinates, are kept in a data structure that include a reference count. Whenever a module inputs such

an object, the reference count is incremented. When a module no longer needs an object the refer-

ence count is decremented. When the count indicates the data is no longer needed, it is freed. In

principle this shouldwork fairly well. However,thereareno tools to examinethestateof shared
memoryusedfor inter-modulecommunicationonanSGIworkstation.Thereareno tools,other
thanadebugger,for examiningreferencecounts.Thus,memoryleaksandothermemorymanage-
mentpathologiesaredifficult to detect.Not only is it difficult to write memory-leakfreemodules
of anycomplexity,it's quitepossiblethatSGI'smodulesleakmemoryaswell. Wheneverweuse
Explorerfor anylengthof time,our64Mbytesof memoryinevitablyfill up.This mayor maynot
indicateamemoryleak andthere'snoeasyway to find out.

Dataon input or outputportsis not freeduntil replacedby newdataor themoduleis destroyed.
Thereis noconvenientway to deletethis datawithoutdestroyingthemodule.Onecould senda
NULL to input portssothat thedatais deletedbut thisdoesn'twork for unwanteddataonoutput
ports.Worse,thereis novisual indicationthatawire, inputport, or outputportholdsdata.
Type conversion

Modules may be written to operate on a single type, e.g., float or int, and still operate correctly on

inputs consisting of bytes, shorts, longs, floats, or doubles. This is accomplished by using the
Module Builder to force the conversion. The Module Builder can write code to convert the data to

the proper type and pass the new data to one's subroutine. This functionality is not available, how-

ever, if a subroutine interfaces to entire lattices or pyramids. Type conversion is only accom-

plished when the Module Builder is used to break up lattices and pyramids into arrays and scalars.

API 7

Explorer comes with a fairly conventional subroutine library API. This library gives the program-

mer control over all Explorer objects relevant to modules. The library is reasonably well docu-

mented and provides complete access for C and FORTRAN, except that input/output port

management is not supported from FORTRAN. There is no specific C++ interface which although
one can use the C interface.

Networking

When writing modules, one need not consider networking issues unless using the Unknown data

type. All other data types are automatically and - as far as our testing reveals - correctly converted
as needed.

LatFunction

SGI provides the LatFunction 8 module to operate on multi-dimensional arrays (i.e., lattices). Lat-

Function implements an interpreted language with a C-like syntax called Shape. Shape is intended

to quickly prototype computational modules; i.e., to convert a set of input lattices and parameters

into a set of output lattices. Learning Shape is somewhat difficult and the error messages are of lit-

tle utility since there are no line numbers. Once mastered, however, LatFunction is incredibly use-

ful. One can quickly try most ideas that can be expressed as data parallel manipulations of lattices.

In addition, many utility modules can be easily implemented.

LatFunction can be used to build Explorer modules with lattice and parameter inputs, lattice out-

puts, and custom widget panels using the Module Builder. Parameter outputs would be very use-

ful but are not provided. We use LatFunction frequently.

7. Application Programmer Interface.

8. Note: the version of LatFunction shipped with Explorer 1.0 has a very serious bug. However, LatFunc-
tion2 which was distributed at the SGI Developer's Forum fixed this bug.

9

Multi-Zone Iblank

Theformatproducedby thelargestmostcomplicatedsimulationsat NAS, Plot3d multi-zone,

iblank 9 (Buning89), is not directly supported by Explorer. It is possible to adapt the Explorer pyr-

amid data structure to implement visualization techniques on these data, although we have not

done so. Every module manipulating lattices would have to be modified or rewritten to input the
new format.

One approach to using pyramids for multi-zone iblank support uses a pyramid's base lattice for a

descriptive string so that the data structure has self knowledge. The grid and field zones are then

stored in the pyramid's other lattices, one zone per lattice. Each grid zone is held in a separate

lattice with the data portion used for the iblank array. Field zones each have a separate lattice, the

coordinate portion may or may not contain the grid point location. Duplicating the grid posses no

major space penalty as only the pointers need be duplicated, not the grid data. Information on

inter-zone topology can be stored in additional lattices. The format may be extended by adding

syntax to the description string. The string should use LISP syntax to avoid inventing yet-another-

interpreted-language-without-a-debugger [Hultquist92].

Visualization Research Perspective

Within the limitations imposed by the data flow model, Explorer shines as a visualization research

tool. The investigator need pay only cursory attention to secondary issues and focus almost exclu-

sively on the visualization problem at hand. Furthermore, it is trivial to compare results with tradi-

tional visualization techniques for which modules exist. We completed a simple research project,

Gridigrator [Globus92a], including pictures and a paper (but no video), in two weeks. This

included the time to learn Explorer and C++. Learning C++ was the single most time consuming

aspect of the work.

LatFunction (see above) provides a marvelous environment for quickly testing out many visual-

ization ideas. LatFunction could have been used to implement Gridigrator. One can quickly and

easily write and test programs to perform a wide variety of array manipulations. The author has

had a great deal of success trying ideas in minutes that might have taken hours or even days if the

software were implemented in C or C++.

Database Management

In the data flow model the data are implicit and hidden; data exist in a vague way on the wires,

input ports, and output ports. Lang91 and Globus92b argue that database management is central to

scientific visualization, although it is usually treated as a peripheral issue. Many of the memory

management problems discussed above stem from lack of database management. Finally, it is dif-

ficult to control what data is saved or discarded by Explorer, a critical issue when visualizing mas-

sive data sets [Globus92b]. We see no solution to the problem of inadequate database facilities, it

appears to be inherent in the data flow model.

Conclusion

Explorer 1.0 is useful for visualization of simple static scalar fields. The user interface is quite

9. Iblank refers to an integer mask indicating meaningless data points.

: 10

reasonable. Some key scientific visualization issues, such as flexibility and unique data format

input, have been directly and successfully addressed. On the other hand, performance and reliabil-

ity need substantial improvement.

Improvements in functionality and scope can be expected because module building is easy and

Explorer is bundled with SGI workstations providing a large user base. The Module Builder

makes writing modules for Explorer an activity dominated by coding an application, not dealing

with obscure interface issues. When developing most modules, user interface, type conversion,

and networking issues are easily dealt with.

On the other hand, memory management can be difficult. The greatest structural weakness of

Explorer is the lack of an explicit database model. This is common to all data flow systems.

Unfortunately, to a great degree scientific visualization consists of building a database of objects

that are viewed in various ways. Explorer provides only indirect access to these objects.

Multi-zone, iblank data are important for CFD research at NAS, but are not directly supported by

Explorer. An adaptation of Explorer data structures can address this issue. Modules to implement

common visualization techniques on these data structures must then be developed.

Explorer appears poorly suited for time dependent visualization except in very simple cases. It

may be possible to write modules that will allow reasonable time varying visualization if adequate

storage is not an issue, but the resulting maps may be error prone.

In general, we have found IRIS Explorer to be useful if somewhat limited. We expect great

improvements in the future, particularly in the number of modules available.

Acknowledgments

The SGI Explorer development has been extraordinarily helpful and responsive in assisting with

problems we've had, fixing problems we pointed out, and discussing Explorer's strength and

weaknesses. E. Raible and A. Vaziri reviewed drafts of this paper and made many helpful com-
ments.

References

[Apple85] Inside Macintosh, Volume l, Addison-Wesley Publishing Company, Inc., ISBN 0-201-
17731-5.

[Bancroft90] G. Bancroft, E Merritt, T. Plessel, P. Kelaita, K. McCabe, A. Globus, "FAST: A

Multi-Processing Environment for Visualization of CFD," Proceedings Visualization '90, IEEE

Computer Society, San Francisco (1990).

[Buning89] P. P. Walatka, E G. Buning, PLOT3D User's Manual, NASA Technical Memorandum
101067, NASA Ames Research Center.

[Globus92a] A. Globus, "Gridigrator: A Very Fast Volume Renderer for 3D Scalar Fields Defined

on Curvilinear Grids," NASA Ames Research Center, NAS Systems Division, Applied Research

Branch technical report RNR-92-001, January 1992.

[Globus92b] A. Globus, "A Software Model for Fast Flexible Visualization of the Largest Time

Dependent Volumetric Numerical Simulations," NASA Ames Research Center, NAS Systems

Division, Applied Research Branch technical report expected in 1992.

[Hultquist92] J. E M. Hultquist and E. L. Raible, "SuperGlue: A Programming Environment for

11

ScientificVisualization,"NASA AmesResearchCenter,NAS SystemsDivision,Applied
ResearchBranchtechnicalreportRNR-92-014,April 1992.

[Hung85]C.H.Hung,EG. Buning,"Simulationof Blunt-Fin-InducedShock-WaveandTurbulent
Boundary-LayerInteraction,"J. Fluid Mech. (1985), Col. 154, pp. 163-185.

[Lang91] U. Lang, R. Lang, and R. Ruehle, "Integration of Visualization and Scientific Calcula-

tion in a Software System," Proceedings IEEE/ACM SIGGRAPH Visualization '91, 22-25 Octo-

ber, 1991, San Diego, California.

[SGI92a] IRIS Explorer User's Guide, Silicon Graphics Computer Systems, Document 007-1371-

010, 1992.

[SGI92b] IRIS Explorer Module Writer's Guide, Silicon Graphics Computer Systems, Document

007-1369-010, 1992.

[Upson89] C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, A.

van Dam, "The Application Visualization System: A Computational Environment for Scientific

Visualization," IEEE Computer Graphics and Applications, July 1989, pp. 30-41.

12

0

